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C. ABSTRACT 
New Zealand waters support the greatest diversity of seabirds on Earth, yet quantitative 

information on where seabirds occur within New Zealand’s EEZ, and how distributions 

vary temporally, remains sparse. This lack of data often means that managers, decision 

makers and the public alike are often faced with a lack of detailed and robust information 

to gauge how particular threats could potentially impact these high-profile, protected 

species. However, acquiring detailed, spatially and temporally resolved seabird 

distribution data through conventional approaches requires considerable resources. This 

project will examine the extent to which seabird location data, either sightings data or 

data derived from electronic tracking devices, can be used to significantly improve our 

understanding of seabird distributions over and above that derived from relative 

environmental suitability (RES) modelling. By comparing species-specific RES models to 

habitat suitability models produced from (1) observational data and (2) location data from 

bird-borne electronic tags, our approach will quantify the level of accuracy associated 

with each method and determine if RES models are sufficient to produce accurate 

estimates of seasonal seabird distributions or identify if additional data are needed. This 

tiered and entirely novel approach has the potential for huge resource savings. 

 

D. RELEVANCE TO CHALLENGE OBJECTIVE 
This proposal is entirely aligned with the Challenge’s Objective to ‘enhance utilisation of our 

marine resources within environmental and biological constraints’ by: 
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 Delivering novel information on how to most cost-effectively define spatio-temporal 

variation in marine habitat use by New Zealand seabirds 

 Providing a framework through which potential interactions between seabirds and 

anthropogenic marine activities can be better understood, and 

 Reducing uncertainty around New Zealand seabird habitat use that will be of direct 

and practical relevance to resource managers and policy makers faced with 

challenging decisions around the effects of increasing human resource use in New 

Zealand’s marine realm. 

 

E. INTRODUCTION 
Marine megafauna, including seabirds, enjoy an extremely high public profile. These 

charismatic species, perhaps more than any other group, define the character of New 

Zealand’s diverse marine estate.  New Zealand waters support the greatest diversity of 

seabirds on Earth, yet quantitative information on where and when seabirds occur within 

New Zealand’s EEZ remains sparse and managers, decision makers and the public alike are 

often faced with a lack of detailed and robust information to gauge how particular threats 

could potentially impact these species. The considerable interest by public and managerial 

stakeholders in maintaining and protecting these iconic New Zealand species, while 

simultaneously balancing the needs of marine resource use, indicates an obvious need for 

high-quality spatial and temporal data on species distribution and abundance, as well as 

the environmental drivers underpinning distribution and abundance. For example, the 

Decision Making Committees of recent Environmental Protection Authority hearings have 

relied on incomplete and patchy information, with a high degree of uncertainty, in this 

space when deciding upon the potential of proposed resource extraction activities to 

impact seabirds. 

However, the collection of robust at-sea observational data for seabirds through 

systematic surveys, even over relatively small areas, can be prohibitively expensive. 

Clearly, a tension exists between the need for high quality, temporally resolved seabird 

distribution data within areas of interest, and the relatively high costs of acquiring such 

information. The research proposal outlined here, entirely novel within the New Zealand 

context, aims to test the extent to which currently available location data can be used to 

(1) significantly improve our understanding of seabird distributions and therefore (2) 

prioritise future data collection so as to minimise resource expenditure and maximise 

information delivery. Importantly, our approach will be tiered, comparing the 

performance of seabird distribution models built without seabird location data to those 

utilising sightings data and others utilising location data acquired from bird-borne tracking 

devices. 

Currently, research into marine megafauna in general, and seabirds in particular, is lacking 

within the Sustainable Seas National Science Challenge. This proposal would fill that gap 

and would, importantly, be of direct and practical relevance to the Challenge’s objective 

to recognise environmental and biological constraints of enhanced utilisation of marine 

resources. This would be achieved by providing marine decision makers with the 

information needed to assess the effects that anthropogenic activities in our marine 

environment might have on New Zealand’s diverse seabird assemblage. 
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F. AIMS 
The over-arching null hypothesis of this project is that seabird distribution models provide 

equally good information about when and where seabirds utilise marine resources, 

regardless of the information used to construct the models. 

In order to test this hypothesis we will: 

 Construct a suite of seabird distribution models, each with increasingly accurate 

seabird distribution data 

 Quantify the extent to which high-quality tracking data can improve predictions of 

seabird habitat suitability, derived from our distribution models, over and above 

those produced with and without seabird sightings data, and 

 Critically assess whether predictions from habitat suitability models produced with 

and without seabird location data can result in a reliable cost-effective tool to 

inform management 

Which will then enable us to: 

 Determine the costs of collecting additional seabird location information that 

might be needed, if any, to produce more robust model outputs, and 

 Provide a framework for reducing uncertainty around decisions where seabird use 

of marine space may conflict with human activities 

 

G. PROPOSED RESEARCH 
Introduction 

This project will test to what extent seabird location data, either sightings data or data 

derived from electronic tracking devices, can be used to significantly improve our 

understanding of seabird distributions over and above that derived from relative 

environmental suitability (RES) modelling.  

Using a tiered approach, this research will model seabird species’ distributions, 

introducing additional data at each step and comparing model performance. First, we will 

construct RES models, which do not require seabird location data for model construction. 

Next, we will use opportunistically-collected and publicly-available at-sea location data to 

predict species occurrence. Both the RES and the species distribution models will be 

evaluated by comparing model outputs to the ‘truth’, or, in this case, location data from 

electronic tracking devices - light-based geolocation and GPS tags. This structured 

approach will enable us to assess the extent to which currently available seabird sightings 

and tracking data can improve our prediction of species’ distributions beyond which can 

be achieved from RES modelling. 

 

Study Species 
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We propose to focus on a suite of five procellariiform seabirds: Campbell albatross 

Thalassarche impavida, grey-headed albatross T. chrysotoma, white-capped albatross T. 

steadi, Buller’s albatross T. bulleri and sooty shearwater Ardenna grisea. These species all 

range widely through New Zealand’s EEZ and occur within the Sustainable Seas focal 

region, either when foraging (e.g., Shaffer et al., 2009) or transiting through the area on 

migration (e.g., Shaffer et al., 2006). Grey-headed albatross is classified as ‘threatened’, 

the remaining four species are classified as ‘at-risk’ (Robertson et al., 2013). 

Species selection is constrained largely by the availability of both sightings data and 

location data acquired from electronic tracking devices. While the species noted above 

are all migratory, with at least some component of the population departing New Zealand 

waters following breeding, our aim is to focus upon the breeding season component of 

species’ annual cycles. 

 

Relative Environmental Suitability models 

First, we will thoroughly examine the primary and secondary literature for known habitat 

associations for each of the five proposed seabird study species to produce relative 

environmental suitability (RES) models. Our RES models will not use seabird location data 

of any kind, but will incorporate preferred habitat parameters available in the published 

literature. Models will focus on the New Zealand breeding season for each species, but 

will additionally and separately include the non-breeding season for those species which 

remain in New Zealand waters year-round (e.g., white-capped albatross). In the absence 

of sightings and tag-derived location data, this approach uses information on species’ 

overall distributions, foraging behaviour, and life history characteristics relative to a suite 

of environmental parameters to assign each species to broad-scale niche categories and 

creates a rule-based envelope model to map species-habitat relationships (Kaschner et al., 

2006, 2011). We plan to incorporate a suite of environmental variables that have been 

used previously in this approach, including depth, bathymetric slope, sea surface 

temperature, chlorophyll a (chl a) concentration and distance from land (e.g., see Watson 

et al., 2013). Depending on the environmental data and the qualitative habitat 

descriptions available, other environmental variables may be included on a species by 

species basis. Following Kaschner et al.  (2006), we will assign each species to a niche 

category for each environmental variable based on a species’ response curve (also termed 

a resource selection function): here, each habitat predictor is assigned a preferred 

minimum and maximum value, between which suitability is assumed to be uniform and 

maximal (value = 1), with suitability tending to zero towards absolute minimum and 

maximum habitat predictor values. An index of RES will be derived, based on an 

appropriate grid size (dependent on the resolution of available environmental variables), 

on a scale from zero to one, by multiplying the suitability of each environmental predictor 

variable. In this way, if any one predictor variable falls outside of a species’ absolute range 

the overall environmental suitability will be zero. This assumes that a species will not 

occur in an environment where one or more environmental variable is deemed 

unsuitable. Using ArcGIS, we will derive the 95%, 75%, and 50% data contours to 

determine areas where the five species are spending the majority of their time during 

both the breeding and non-breeding seasons. 
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Habitat suitability models – sightings data 

Secondly, we will use sightings data for each species as the response variable in boosted 

regression tree (BRT) models in order to predict species’ preferred habitat, based on the 

same environmental predictor variables as included in the RES models.  

Sightings data will be acquired from published primary and secondary literature sources 

(e.g., Jenkins, 1981, McQuaid & Ricketts, 1984), together with online, publicly-accessible 

seabird sightings databases (e.g. eBird: http://ebird.org/content/newzealand/). We will 

use BRTs since they are able to accommodate the non-linear relationships characteristic 

of many ecological systems and can additionally interpret highly complex relationships 

between species and their environment. BRTs have become increasingly popular in 

habitat suitability modelling across a wide array of study systems, including tortoise 

Gopherus agassizii in the central Mojave Desert (Andersen et al., 2000), demersal fish 

species richness around New Zealand (Leathwick et al., 2006), benthic assemblages off 

New Zealand (Compton et al., 2013), southern right whale Eubalaena australis in 

Australasia (Torres et al., 2013) and phosphorite nodule deposits on the Chatham Rise 

(Leduc et al., 2015). BRT models use two algorithms: 1) classification and regression trees 

and 2) boosting to combine a collection of models (Elith et al., 2008). By combining trees 

during boosting, the misclassification error is minimised and the overall predictive 

performance improved (Leathwick et al., 2006).  Boosting is optimized by three 

parameters: the learning rate (lr) that determines the weight of individual trees, tree 

complexity (tc) that indicates the number of interactions, and the number of trees (nt), as 

used by Torres et al. (2015). 

We will use the ‘gbm’ package (Ridgeway, 2006, 2007, 2010) within the statistical 

software R 3.2.2 (R Development Core Team, 2013) and methods proposed Elith et al. 

(2008) to fit a BRT model to our data. A binomial error distribution of the Bernoulli family 

will be used to predict the probability of seabird occurrence.  As such, we will generate 

pseudo absence points and we will obtain environmental data at both presence and 

absence locations. Initially, 50 trees will be fit using recursive partitioning of the data after 

which residuals from the initial fit will be fit with another 50 trees, and so forth, until the 

model deviance is minimized.  As recommended by Elith et al. (2008), we will test models 

with and without interactions while allowing the lr to vary so as to ensure that a minimum 

of 1000 trees are run.  Environmental variables that contribute less than 5% to the model 

will be removed. 

Based on the final BRT model for each species and season, we will generate spatial 

predictions.  These maps will facilitate the visual assessment of habitat suitability. As with 

the RES predictions, we will derive the 50%, 75%, and 95% data contours for the habitat 

suitability prediction.   

 

Habitat suitability models – electronic tag data 

http://ebird.org/content/newzealand/
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Thirdly, we will use location data derived from a mix of bird-borne electronic tracking 

devices to assess the predictive performance of RES and BRT models derived from 

opportunistic sighting data. Location data from tracking devices have been collected and 

are available for all five study species: Table 1 summarises the number of tracked 

individuals, by species, for three different types of tracking data. GPS (Global Positioning 

System) are highly accurate and resolved data, typically locations are acquired every few 

minutes, but over relatively short-term deployments of days to weeks. PTT (Platform 

Transmitting Terminal) provide location data acquired via the ARGOS satellite array, which 

are relatively accurate and typically acquired at intervals of a few hours over deployments 

of weeks to months. GLS (Global Location Sensor) tracking tags provide long-term (months 

to years) data acquisition of lower accuracy and with only two location per 24-hour 

period. 

 

Table 1. Numbers of individuals of the five study species for which tracking data are 

available. See text for explanation of tracking devices. 

Species GPS PTT GLS 

Campbell albatross 81 - 73 

Grey-headed albatross 53 -- 76 

White-capped albatross 50 35 34 

Buller’s albatross 77 30 34 

Sooty shearwater - - 28 

 

We will use these data to test the predictive accuracy of both the RES and BRT models. 

Specifically, we will use Receiver Operator Characteristic (ROC) curves and the Area Under 

the Curve (AUC) to assess model performance. AUC values range from 0 (no 

discrimination ability between presence and absence values) and 1 (perfect 

discrimination) (Pearce & Ferrier, 2000). The AUC value will provide a measure of 

predictive ability and will allow us to compare the performance of the RES to BRT models 

and determine if a model informed by sightings data is superior to a model that is 

sightings-independent. 

Finally, we will create a habitat suitability model for each species during the breeding and 

non-breeding season using only the data available from electronic tags.  Similar to the 

opportunistic sightings data, we will use BRT models to fit a binary response variable 

(presence and absence) to a suite of environmental predictor variables.  As such, we will 

create pseudo absence points using correlated random walks following the methods 

outlined in Goetz (2015). We will use the same methods outlined above for BRT models 

but will modify code from Crase et al. (2012) to account for residual spatial 

autocorrelation in the data. 

Having determined the best BRT model created from the electronic tag data, we will 

create a spatial prediction map and determine the 50%, 75% and 95% data distribution 

contours.  These contours will then be compared spatially and temporally (across seasons) 

with the contours from the RES (without sightings data) and BRT (with sightings data) 

model predictions. In this comparison, the predictions derived from the electronic animal-
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borne tags are considered as close to the ‘truth’ as possible and the accuracy of the RES 

and BRT sightings models will be assessed based on how closely models predict habitat 

suitability relative to the electronic tagging data. 

 

H. RESEARCH ROLES 
Researcher Organisation Contribution 

Dr David 
Thompson 

NIWA The development of distribution models and model comparison. 

Dr Kimberly 
Goetz 

NIWA The development of distribution models and model comparison. 

 

I. LINKAGES AND DEPENDENCIES  
This project complements, rather than overlaps, research currently being conducted to 

support the over-arching Challenge Objective to enhance utilisation of marine resources 

within environmental constraints, and does not have any dependencies within the Challenge 

framework. 

Specifically, this project proposed here will provide data and outputs that are synergistic to 

the theme of Sustainable Seas’ Programme 5, Managed Seas. The Managed Seas Programme, 

will deliver innovative and effective decision support tools, which will integrate the knowledge 

generated by the Challenge to allow ecosystem based management, ensuring sustainable 

utilisation of our marine resources. While we are not proposing to develop an ecosystem 

based model, we will develop a tiered modelling approach to assess what additional data may 

be needed to accurately quantify the distribution of seabirds, a key component of all marine 

ecosystems in New Zealand. Furthermore, our proposed project will provide a template which 

will allow marine managers make better-informed decisions when faced with the sometimes 

conflicting requirements of seabird conservation and marine resource use.  

 

J. RISK AND MITIGATION  
Because this project is primarily a desktop exercise, little risk is involved. The modelling 

described in this proposal draws upon data available in published sources, publicly 

available or published seabird sightings data and tracking data, which have been collected 

as part of previous NIWA research programmes or as part of programmes in which NIWA 

has been a key collaborator. In short, data availability is a very low risk to the successful 

outcome of this project. 

 

K. ALIGNED FUNDING AND CO-FUNDING  
This project is aligned with an MPI-funded project (PRO2014-01, $109,900 NZD), which 

aims to improve our understanding of the distribution of marine mammals. This will be 

achieved by collating and examining the available spatial occurrence data of 47 potentially 

at-risk cetacean species and produce habitat suitability maps for those species with 

sufficient data.  This information will be used to support future updates of the marine 

mammal risk assessment (PRO2012/02), which is currently being undertaken for the first 
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time (Berkenbusch et al., 2013). Spatially comprehensive environmental data layers will 

be used to inform species distribution models in order to derive empirically-based 

protected species distribution maps for selected marine mammals.  

There is a relatively large amount of synergy between the project outlined here and the 

MPI-funded marine mammal project. Furthermore, our project will directly add valuable 

information to this MPI funded project, especially for marine mammal species where little 

data are available. In these cases, models must be developed from a paucity of sightings 

data or from basic environmental parameters that are thought to determine marine 

mammal distributions directly or indirectly, as in the case of RES models.  Knowing how 

well our seabird models preform using different levels of data quality will allow us to 

determine not only the level of confidence in our models but also where resources should 

be allocated to increase the level of data quality when engaging in ecosystem based 

modelling. 

 

L. VISION MᾹTAURANGA (VM)   
This proposal is likely to have broad appeal to Māori who regard seabirds as taonga species.  

There is likely to be considerable traditional knowledge of the five target species identified for 

inclusion in this project, knowledge that could inform the successful development of the RES 

models for each species. To do this we will aim to capture relevant information from 

published sources and will seek input from key informants and/or identified mana whenua 

representatives in the early stages of the project.  

Our initial species selection was constrained largely by the availability of tracking data though 

the outputs from this project will be applicable to Māori with particular interests in species 

not initially covered in this research. We will seek input and guidance to potential future 

target species for this work, with the aim of providing a cost-effective solution to improving 

the cross-cultural understanding of seabird habitat use. 

 

M. CONSENTS AND APPROVAL 
This project does not require any marine consents or ethics approvals. 

 

N. DATA MANAGEMENT 
NIWA has an in-house IT department with expertise and proven capability in securely 

managing large quantities of data. The IT team will supply room on a dedicated server 

where project data can be securely stored and accessed.  
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