

Webinar starts: 1:05pm, Thursday 27 August

SUSTAINABLE SEAS

> Ko ngā moana whakauka

Sea-floor species health and survival to underwater 'sediment clouds'

Malcolm Clark¹ & Vonda Cummings¹ On behalf of the Project Team

Jenny Beaumont¹, Valeria Mobilia², James Bell², Neill Barr¹, Di Tracey¹, Emily McGrath²

1, NIWA; 2, Victoria University

SUSTAINABLE SEAS

> Ko ngā moana whakauka

Presentation outline

Project background

• Aims

Our work

- Experimental system development
- Results

Project conclusions and future application

Q&A

Background

- A large proportion of the seafloor in New Zealand waters is soft sediment
- Sediments can be disturbed by storms and/or by human activities
 - e.g. seabed dredging, mining, fishing, land-based activities
- Create clouds or plumes of suspended sediments
 - potentially extend over a wide area
- Limited data and understanding of biological responses to exposure to elevated suspended sediments (cf. direct seabed disturbances)
 - especially deeper shelf and continental slope fauna

Biological responses

- Suspended sediment can affect the abundance, diversity and structure of benthic communities
- May influence factors such as survival, larval recruitment, feeding rates and efficiency, growth
- Species, and life history stages, vary in their vulnerabilities
- Some have specific strategies to reduce sediment intake
 - cessation or reduction of respiration or pumping
 - mucous production to remove sediment
 - particle expulsion

Budd, NIW

Background (the Sustainable Seas "fit")

- The "Sediment tolerance and mortality thresholds of benthic habitats" project began in 2016
- Funded through the Challenge's Innovation Fund and part of the Dynamic Seas Programme from Phase I
- Aligned to the Sustainable Seas Challenge objective:

"to enhance the value of NZs marine resources while providing a healthy marine environment"

- Improved knowledge of impacts, support for ecological risk assessments and ecosystem based models
- Extend Sustainable Seas research to deeper shelf waters

- to help establish threshold levels of suspended sediments where impacts might become "ecologically significant"
- provide information to mitigate or manage impacts of suspended sediments

Study focus

Where?

- South Taranaki Bight and Wellington
- Consistent with West Coast Stage 1 Challenge study area
- Relevance to interest at the time in offshore impacts and sediment clouds (e.g. ironsands mining)

What?

- Common species
- Dog cockle (*Tucetona laticostata*)
- Sponge (Crella incrustans)

How?

- Laboratory experiments
- Suspended sediment system

Chamber system development

Chamber system development

Chambers Version 3

Manual checks (optical turbidity meter)

Experimental design

Experimental design

Collection

Tucetona laticostata (dog cockle)

Victoria University of Wellington, divers

Crella incrustans (sponge)

Cockles

Tucetona laticostata

Cockle gills

Ko ngā moana whakauka

Crella incrustans

High survival Sediments accumulated internally

Respiration rates not significantly affected

Ko ngā moana whakauka

Crella incrustans

- Morphological changes
- Greater number of 'apical fistules' at higher suspended sediment concentrations (SSC)
- Crella tolerance to temporary (thin) sediment deposition?

Conclusions

- Lack of strong negative effects on either *Tucetona* or *Crella*
- Both species had mechanisms to clear the sediments
- May be predisposed to 'coping', at least over the time frames and conditions investigated
- BUT, more sensitive measures, mechanisms of sediment processing, different life stages, will all enhance understanding of species responses

Conclusions and follow-up research

- Multiple insights into the resilience of two species
- Established effective laboratory system for maintaining sediment in suspension not an easy task
- Developed approaches and methodology to undertake experimental work, to complement *in situ* observations and disturbance research

Ko ngā moan

whakauka

SEAS

Conclusions and follow-up research

Results and methodologies have informed other sedimentation research projects

• Juvenile scallops (NIWA)

Tolerance of juvenile scallops to suspended sediments, to inform ecosystem modelling (2020)

• Deep sea corals and sponges (NIWA, VUW)

ROBES (Resilience Of deep-sea Benthos to the Effects of Sedimentation) (2016-2021)

Chatham Rise corals (*Goniocorella dumosa*) and sponges (*Ecionemia novaezelandiae*) (2019)

Follow up deep-sea coral experiments, expanding response variable scope to include genetic microbiome and histology studies (2020)

Acknowledgements

- Ko ngā moana whakauka / Sustainable Seas National Science Challenge for funding.
- *RV Kaharoa* crew and NIWA staff for dog cockle collection.
- Victoria University of Wellington's dive team for sponge collection.
- NIWA and VUW staff and students for their help with aspects of the experimental work.
- Images and photos provided by a number of NIWA and VUW staff and students

Results related to *Crella incrustans* have been published:

Cummings et al. (2020): Responses of a common New Zealand coastal sponge to elevated suspended sediments: indications of resilience. *Marine Environmental Research 155* doi.org/10.1016/j.marenvres.2020.104886

SUSTAINABLE

vhakauka

Questions?

Benthic Lander, NIWA