

The utility of an expert-elicitation-informed Bayes Decision Net for Tasman Bay and Golden Bay scallop ecosystem-based management

Presenter: Jeremy McKenzie

Chris Cornelison; Judi Hewitt; Carolyn Lundquist; Fabrice Stephenson; James Williams

Climate, Freshwater & Ocean Science

In this talk I will describe a BDN decision support tool for Tasman Bay and Golden Bay (TBGB) scallop management strategy evaluation (MSE).

Our scallop MSE uses a Structured Decision Making framework approach to EBM.

Presentation structure:

I will provide contextual background to the TBGB scallop management issues investigated

I will briefly outline the Structured Decision Making (SDM) framework approach as applied in our case study

I will describe the BDN used in our study and the role **Expert Elicitation** played in its development and validation.

Finally, I will show how application of our BDN model with a SDM framework allows stakeholders and managers to make informed management decisions.

Disclaimer:

This work was undertaken as part of a larger EBM participatory tools development project under SS.

The BDN model presented today is currently **NOT** being used in TBGB scallop management decision making. However the management objectives in our MSE framework were developed in consultation with TBGB scallop stakeholders and managers.

TBGB Scallop EBM issues

TBGB scallop stocks have high economic, social and cultural value to:

- Local iwi
- Commercial fishers
- Recreational fishers

Climate, Freshwater & Ocean Science

TBGB Scallop EBM issues

During the 1990's scallops were abundant throughout TBGB and supported a 500 t pa commercial dredge fishery.

Scallop abundance fell markedly through the 2000s by 2012 most dense beds had disappeared

Since 2012 commercial scallop fishery in the wider TBGB area has been closed

Climate, Freshwater & Ocean Science

TBGB Scallop EBM issues

Despite the severe reduction in commercial fishing TBGB scallop abundance has remained low with evidence now pointing to habitat degradation the likely main cause.

The main degradation agents are:

- Past and ongoing bottom damage from scallop dredges and trawl nets
- Increased sedimentation and nutrient loadings form largely land-based activities (i.e. farming, forestry, urban development).

NIWA Taihoro Nukurangi

SDM Requirements

- 1. A set of stakeholder ecosystem objectives
- 2. A set of alternative management strategies for achieving these objectives
- 3. A method by which the "performance" of alternate management options can evaluated against stakeholder objectives

Management outcome "Performance outcome scores" as derived from applying best available science understanding.

Based on meetings with the main stakeholders including some local iwi we identified 5 TBGB scallop management **objectives**:

- 1. INCREASE: TBGB Scallop Productivity and accessibility
- 2. RESTORE: TBGB benthic biodiversity
- 3. RESTORE: Ecosystem health
- 4. INCREASE: Scallop Fishery Profitability
- 5. INCREASE: Fishery Profitability (finfish)

Also based on stakeholder input, we chose to investigate the relative utility of the following **management measures:**

- 1. Reduce bottom contact fishing (dredge & trawl)
- 2. Reduce terrestrial sediment run-off
- 3. Decrease nutrient inputs from terrestrial sources
- 4. Undertake seabed restoration

The goal of our BDN model is to predict the likely state of the TBGB scallop ecosystem **10 years** into the future pursuant to various alternative management actions or decisions, and on the basis of this to identify the best overall set of management options i.e. ones that best meets a given set of stakeholder objectives.

NIWA Taihoro Nukurangi

Climate, Freshwater & Ocean Science

Abiotic Ecosystem Factor nodes

Scallop productivity nodes

Benthic habitat formers and nutrient cycler nodes

Taihoro Nukurangi

How Expert Elicitation was used to build the TBGB BDN model

Our Expert Elicitation process took place over a two-day workshop and comprised a group of nine NIWA and Cawthron Institute scientist who's joint knowledge on TBGB marine ecosystem processes and resource management spanned a broad range of disciplines.

{benthic and marine ecology, scallop and finfish stock assessment, ecological modelling, physical oceanography and ocean productivity, social science}

Climate, Freshwater & Ocean Science

How Expert Elicitation was used to build the TBGB BDN model

Our "experts" were given four tasks:

- 1. Construct a web of "cause and effect" relationships between the BDN model nodes
- 2. Define the magnitude of the relationship between BDN "parent" and "child" nodes in the form of Condition Probability Tables.
- 3. Specify the utility node conditional nodes linkages
- 4. Specify how the utility scores were to be functionally derived

Task 1: TBGB BDN node cause and effect linkages as derived from expert consensus

Task 2: Condition Probability Table derivations

Once the cause and effect relationships between the nodes had been established, each expert was then asked to provide their opinion as to likely probability state of each child node conditional on the state of each of the parent nodes.

Task 2: Condition Probability Table derivations

Example: The Sediment Loadings child node CPT

				child node				
parent node	parent node weight	naront catagony	TBGB Sediment Loadings					
parent node	parent node weight parent category		decreasing	no_change	increasing			
		increase_P50						
Terrestrial Sedimentation Rates		no_change						
		decrease_P50						
Frequency of extreme storm events due to climate change		no_change						
		more_frequent						
		Extreme						

Example: The Sediment Loadings child node CPT

				child node			
naront node	naront node weight	naront catogory	TBGB Sediment Loadings				
parent node	parent node weight parent category		decreasing	no_change	increasing		
		increase_P50					
Terrestrial Sedimentation Rates		no_change	2%	96%	2%		
		decrease_P50					
Frequency of extreme storm events due to climate change		no_change					
		more_frequent			N		
		Extreme					

Each expert was asked to provide probability estimates for each child node category state for a given parent node state independent of other parent node states.

Example: The Sediment Loadings child node CPT

			child node			
narent node	parent node weight	narent category	TBGB Sediment Loadings			
parent node		parent category	decreasing	no_change	increasing	
		increase_P50	0%	0%	100%	
Terrestrial Sedimentation Rates		no_change	2%	96%	2%	
		decrease_P50	100%	0%	0%	
Frequency of extreme storm events due to climate change		no_change	0%	98%	2%	
		more_frequent	0%	8%	92%	
		Extreme	0%	0%	100%	

Example: The Sediment Loadings child node CPT

			child node				
narent node	narent node weight	narent category	TBGB Sediment Loadings				
parent node	parent node weight	parent category	decreasing no_change		increasing		
Terrestrial Sedimentation Rates	1	increase_P50	0%	0%	100%		
		no_change	2%	96%	2%		
		decrease_P50	100%	0%	0%		
Frequency of extreme storm events due to climate change		no_change	0%	98%	2%		
	0.5	more_frequent	0%	8%	92%		
		Extreme	0%	0%	100%		

The final row table values were the median expert row scores restandardised to sum to 1.

CPT interpolation

CPT complexity increases exponentially as the number of parent nodes increases.

The final child-node CPT in below example has 9 parent node combinations.

			child node				
narent node	narent node weight	nevent esterem	TBGB Sediment Loadings				
parent node	parent node weight	parent category	TBGB Sediment i decreasing no_change 0 0% 0% 2% 96% 0% 0 100% 0%	no_change	increasing		
Terrestrial Sedimentation Rates	1	increase_P50	0%	0%	100%		
		no_change	2%	96%	2%		
		decrease_P50	100%	0%	0%		
Frequency of extreme storm events due to climate change	0.5	no_change	0%	98%	2%		
		more_frequent	0%	8%	92%		
		Extreme	0%	0%	100%		

It was possible to derive the 9 conditional probability outcomes for the different parent node state combinations from the above table given we were confident certain causality scalability assumptions held.

Our interpolation process was also able to take account of the parent node relative weighting scores.

Task 3: Specify objective utility node BDN linkages develop utility functions

Task 4: Specify utility functions

The score range for all the Objective utility nodes was constrained between -10 and +10.

-10 signifying the worst possible 10 yr outcome state
+10 signifying the best possible 10 yr outcome state
0 signifying neutrality, no change, or no improvement

All utility objectives contributed equally to the final overall utility score.

The relationship between parent-node state and utility score prediction was chosen to be approximately linear.

Climate, Freshwater & Ocean Science

	status quo	no seabed	restoration	seabed	restoration	
		best overall	best commercial	best overall	best commercial	Management Measure
Stakeholder Objectives						Commercial trawl and dredge
						Terrestrial sedimentation inputs
						Terrestrial nutrient inputs
						Seabed restoration
INCREASE: TBGB Scallop Recreational scallop mean size and accessibility						
RESTORE: TBGB benthic biodiversity						
RESTORE: Ecosystem health						management scenario performance
INCREASE: Scallop Fishery Profitability						per objective
INCREASE: Fishery Profitability (finfish)						
						overall performance

	status quo	no seabed restoration		seabed restoration		
	(do nothing)	best overall	best commercial	best overall	best commercial	Management Measure
	no reduction					Commercial trawl and dredge
Stakeholder Objectives	no change					Terrestrial sedimentation inputs
	no change					Terrestrial nutrient inputs
	no_restore					Seabed restoration
INCREASE: TBGB Scallop Recreational scallop mean size and accessibility						
RESTORE: TBGB benthic biodiversity						
RESTORE: Ecosystem health						management scenario performance
INCREASE: Scallop Fishery Profitability						per objective
INCREASE: Fishery Profitability (finfish)						
						overall performance

	status quo	no seabed restoration		seabed restoration		
	(do nothing)	best overall	best commercial	best overall	best commercial	Management Measure
Stakeholder Objectives	no reduction	dredging banned	reduction_50			Commercial trawl and dredge
	no change	decrease_50	decrease_50			Terrestrial sedimentation inputs
	no change	no change	no change			Terrestrial nutrient inputs
	no_restore	no_restore	no_restore			Seabed restoration
INCREASE: TBGB Scallop Recreational scallop mean size and accessibility						
RESTORE: TBGB benthic biodiversity						
RESTORE: Ecosystem health						management scenario performance
INCREASE: Scallop Fishery Profitability						per objective
INCREASE: Fishery Profitability (finfish)						
						overall performance

	status quo	no seabed restoration		seabed restoration		
	(do nothing)	best overall	best commercial	best overall	best commercial	Management Measure
	no reduction	dredging banned	reduction_50	reduction_50	no reduction	Commercial trawl and dredge
Stakeholder Objectives	no change	decrease_50	decrease_50	decrease_50	decrease_50	Terrestrial sedimentation inputs
	no change	no change	no change	no change	no change	Terrestrial nutrient inputs
	no_restore	no_restore	no_restore	restore	restore	Seabed restoration
INCREASE: TBGB Scallop Recreational scallop mean size and accessibility						
RESTORE: TBGB benthic biodiversity						
RESTORE: Ecosystem health						management scenario performance
INCREASE: Scallop Fishery Profitability						per objective
INCREASE: Fishery Profitability (finfish)						
						overall performance

Conclusions:

BDNs are particularly suited for a structured decision making approach where the terms of reference have been clearly established with stakeholders and managers:

- Agreed stakeholder management objectives;
- Agreed *management options;*
- Agreed management performance measurement criteria;
- Agreed management timeframe.

BDN models are capable of being used interactively by stakeholders and managers to explore the relative effectiveness of alternative management measures.

BDN's intuitive "cause and effect" flow-diagram structure means they could be easily developed interactively with stakeholders to accommodate differing "word views".

Our experience suggests BDNs can be relatively quickly and easily constructed on the basis of expert opinion and knowledge, which means they could be introduced into the management engagement process early on.