National SCIENCE Challenges

Webinar starts: 11am, Tuesday 3 February

Ko ngā moana whakauka

A step closer to a future powered by tidal current energy

Ross Vennell Cawthron

Acknowledgements

Sustainable Seas Innovation Fund project:

Energy from tidal currents - Kick-starting a new marine industry with huge potential

Project team: Ross Vennell, Robert Major, Heni Unwinand Max Scheel (Cawthron), Brett Beamsley and Remy Zyngfogel (MetOcean Solutions)

Learn more at:

https://www.sustainableseaschallenge.co.nz/our-research/energy-from-tidal-currents-kick-starting-a-new-marine-industry-with-huge-potential/

Where we need to go!

- NZ's demand for electricity will increase
- We need significant expansion of renewable energy generation

Figure 3.13: Electricity generation by fuel in our path.

Source: page 62, <u>2021 Draft Advice for Consultation</u> He Pou a Rangi Climate Change Commission

Sources of ocean energy

- 1) Wave
- 2) Tidal
- 3) Thermal (OTEC)
 - ocean heat pump
- 4) Osmotic power
 - fresh meets salt

water

Tidal energy – predictable!

2a) Tidal "barrage" (dam)

Requires large tidal range > 5m

World's largest 240 MW plant on the Rance River, France 1960s

2b) Tidal currents

www.seageneration.co.uk www.marineturbines.com

Tidal turbines – wet wind turbines?

Why is NZ a great place to generate power from tidal currents?

1) Tidal Phase Distribution

NIWA tidal model

2) Cook Strait (maximum 15,000 MW averaged)

NIWA tidal model (Rickard)

Tidal energy and Cook Strait

- Big waves!
- Best place in the world to generate energy from tidal currents
- Research focus region:
 Cape Terawhiti

Developing tidal turbine farms involves:

Engineering

Designing, manufacturing, installation, maintenance systems, cabling, grid connections, etc.

Assessing environmental impacts

Effects of flow reduction, underwater noise, changes in sedimentation, etc.

But first, you need to know: Is it worth it?

How much power can we get from the turbines at a site?

One turbine = 1MW

or 100-200 homes

Need 100 - 1000's MW

eg, how much from 100's of turbines?

To be really useful need 10s - 100s turbines in a farm

Do 100 x 1MW turbines give a 100MW output?

Depends!

100 turbines give:

- small channels < 100MW
- large channels > 100MW

1MW

100MW

Large turbine farms in channels

Farm Power output ∞ (number of turbines) (efficiency) (current speed)³

We used a hydrodynamic model to quantify farm power output

Rapid initial assessment of 3 sites (A, B C) for many different farm sizes

Need to tune turbines to maximise power

Figure 1: Cook Strait location map and model grid as blue triangles. The best high flows sites for tidal turbine farms are centered in the focus region, around Cape Terawhiti, where a 200 m grid refinement was used.

This is a technical challenge!

- Running model many times to maximize power output from 100's farm sizes and shapes
- Tuning balances flow going through the farm with flow diverted around the farm
- Rapid = days of computation, not months

What are the best locations, sizes and shapes for farms?

Site-A: How much power/efficiency trade off

Results: Site A

95 turbines spaced100m apart in2 rows

```
= 90 MW (peak)
```


West Wind, Makara, Wellington

140 MW = 70,000 homes

Key takeaways

- Model can rapidly assess a potential site
- Site **A** with **95** x 20m diameter turbines, spaced **100m** apart in **2** rows
- May be close to being economic now with existing turbine technology
- Larger farms need larger turbines to efficiently extract energy from weaker flows offshore of site A

Where to find the model:

Renewable Energy Volume 162, December 2020, Pages 1890-1905

Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents

Ross Vennell ^a $\stackrel{\circ}{\sim}$ \boxtimes , Robert Major ^a, Remy Zyngfogel ^b, Brett Beamsley ^b, Malcolm Smeaton ^a, Max Scheel ^a, Heni Unwin ^a

^a Cawthron Institute, Nelson, New Zealand

^b MetOcean Solutions, Raglan, New Zealand

doi.org/10.1016/j.renene.2020.09.101

Contact Ross:

Ross.Vennell@cawthron.org.nz

SUSTAINABLE SEAS

Ko ngā moana whakauka

Learn more at:

https://www.sustainableseaschallenge.co.nz/our-research/energy-fromtidal-currents-kick-starting-a-new-marine-industry-with-huge-potential/