

Ko ngā moana whakauka

Changes in nature and the nature of change

Implications for assessing risk and uncertainty in the real world,

Addressing risk and uncertainty, Sustainable Seas Conference, November, 2018, Wellington

Simon Thrush & the Tipping Points Project, Institute of Marine Science, The University of Auckland

OTÃGO

Setting limits and avoiding risk

Concentration/ load/ extraction

 Set and forget policy
One stress at a time please
Focus on stress or extraction loads not ecosystem responses

Estimates of how the different control variables for seven planetary boundaries have changed from 1950 to present.

But how do ecosystems actually change?

Monitoring can detect

- A past TP
 - Change management from reactive to restoration
 - Use to determine precautionary thresholds for other locations
- An approaching TP (EWS)
 - Take action

How do NZ programmes stack up?

hallenges

Ko ngā moana

Typically

- Short
- Low frequency
- Spatially and temporally

now do NZ programmes stack up?			
Typically Short • Short Short • Low frequency Short • Spatially and temporally nested. Type Extent Frequency Intertidal and subtidal rocky Simo - 5y Simo or annual, or irregular			
Туре	Extent	Frequency (lag)	no th
Estuarine macrofauna	9 – 30y	2mo – 5y	
Intertidal and subtidal rocky	<5 – 25y	3mo, or annual, or	
reef epibenthos		irregular	Q'ax
Fish from trawls	38y	Annual to 3y	National SCIENCE SUSTAINABLE Ko ngā moa seas

Climate variability

 67 - 78% species lower detection of TP in El Nino years and higher variability

Increasing certainty - Making more with less

- Use most appropriate scales, data and tests
- Extract information from noise
- Use a variety of techniques to increase certainty

Multiple stressors & Cumulative impacts

Disturbance regimes

- Spatial extent
- Frequency
- Intensity

Single agent of change (e.g., fishing)

- Changes in trophic relations
- Changes in ecosystem function
- Biodiversity loss
- Habitat disturbance
- Pollution
- Noise

Multiple agents of change

- Eutrophication * fishing
- Eutrophication*sedimentation
- Sedimentation* Sea level rise
- Increased SST * ocean acidification
- Pollution * habitat loss

Ko ngā moana whakauka

Risks and cumulative effects

Rocky reefs

Squeezed out by two stressors

Cumulative and interactive effects radically shift risk profiles

Thrush, S.F., Dayton, P.K. (2010) What can ecology contribute to ecosystem-based management? Annual Review of Marine Science, 2, 419-441

National SCIENCE

SUSTAINABLE

SEAS

Ko ngā moana

whakauka

- Ecosystem Services
- Social-Ecological Systems

What do we need to do?

- Better frameworks to quantify cumulative effects
 - Incorporate Connectivity, not but just populations ecosystem functions and services
 - Link ecosystem responses to stressors and cumulative impacts
- Manage for Surprise
 - Operationalise Resilience
 - Enhance biodiversity particularly functional diversity, habitat heterogeneity and redundancy.
 - Precautionary approaches when uncertain of consequences

