
 

 

 

 

 

                                     

 

 

 

Guidance for using drones to 
monitor coastal ecosystems 

Tait L & Mangan S   
April 2024 

 

 

 

 

 



Report for Sustainable Seas National Science Challenge. 

Authors 

Leigh Tait & Stephanie Mangan 

 

Date of publication 

April 2024 

 

 

 

 

 

 

 

 

   

 

About the Sustainable Seas National Science Challenge 

Our vision is for Aotearoa New Zealand to have healthy marine ecosystems that provide value for all 
New Zealanders. We have 75 research projects that bring together around 250 scientists, social 
scientists, economists, and experts in mātauranga Māori and policy from across Aotearoa New 
Zealand. We are one of 11 National Science Challenges, funded by the Ministry of Business, 
Innovation & Employment. 

www.sustainableseaschallenge.co.nz 

Cover image: Aerial image of rocky shore. Hamish Sutton [NIWA]  

http://www.sustainableseaschallenge.co.nz/


 

Acknowledgements 

Thank you to Kimberley Seaward and Lesley Bolton-Richie for reviewing this document. 

  



Contents 

Summary ........................................................................................................................... 5 

Platform selection ............................................................................................................ 6 

Overview ................................................................................................................................... 6 

Spectral resolution: RGB versus multispectral imaging ............................................................ 8 

Tidal influences ......................................................................................................................... 9 

Summary ................................................................................................................................. 10 

Aerial monitoring using UAVs ......................................................................................... 11 

Resources required ......................................................................................................... 12 

Methodology .................................................................................................................. 13 

Data capture and image pre-processing ................................................................................. 13 

Suitable conditions for imagery capture ............................................................................. 13 

Site setup ............................................................................................................................. 13 

Training samples.................................................................................................................. 15 

Imaging ................................................................................................................................ 16 

Image pre-processing .......................................................................................................... 17 

Post-processing: analysis, interpretation and reporting ......................................................... 17 

Data analysis ........................................................................................................................ 17 

Data interpretation ............................................................................................................. 19 

Reporting ............................................................................................................................. 19 

Summary of workflow ............................................................................................................. 20 

Case study ....................................................................................................................... 21 

Outline ..................................................................................................................................... 21 

Methods .................................................................................................................................. 21 

Aerial imaging protocol ....................................................................................................... 21 

Imagery analysis .................................................................................................................. 21 

Example of results ................................................................................................................... 22 

Glossary of abbreviations and terms .............................................................................. 24 

References ...................................................................................................................... 25 

 

 

  



  5 

Summary 

Coastal rocky reef habitats support diverse and productive ecosystems, as well as valuable 
commercial, recreational, and customary fisheries. With increasing pressures on coastal areas from 
land-use, coastal development and climate change, there is a need to effectively monitor these 
environments at scales that can inform management strategies. 

Traditional monitoring of coastal ecosystems includes a variety of data collection methods such as 
visual observations of community assemblages and water and sediment quality metrics. These on-
ground survey methods have greatly assisted in understanding the health and community 
composition of surveyed areas, however, they are typically labour-intensive, are restricted to a small 
spatial footprint, and can bias results towards accessible areas. Gathering data at greater spatial 
scales reduces the inherent variability of results associated with small scale sub-sampling and 
increases our understanding of the whole ecosystem, including habitats and areas not accessible to 
traditional methods. 

Remote sensing technologies can be used to increase both spatial and temporal monitoring of 
coastal ecosystems. These range from satellites to manned aircraft to unmanned aerial vehicles 
(UAV; i.e., drones). Remote sensing technologies have been applied to a wide range of 
environmental and ecological monitoring including coastal benthic habitat mapping (Ventura et al. 
2023), water quality assessments (Gupana et al. 2021; Adjovu et al. 2023) and the presence of 
macroalgal blooms (Al-Shehhi and Abdul Samad 2022; Hu et al. 2023).  

High resolution remote sensing (i.e., UAV multispectral imaging) can be particularly useful in 
accurately detecting and discriminating between marine vegetation, such as kelp and seaweed 
species, on account of specific reflection and absorption of light in the red and infrared regions (Chao 
Rodríguez et al. 2017; Tait et al. 2019). This characteristic has enabled broadscale mapping of these 
critical ecosystem components, and can be used to infer the health of coastal rocky reef ecosystems 
(Murfitt et al. 2017; Tait et al. 2019). For example, recent mass mortality events of nationally 
significant bull kelp has been documented by multispectral aerial drones and has enabled the 
identification of remnant populations in areas otherwise inaccessible to traditional methods (Tait et 
al. 2021b). 

This document provides guidance on choosing a remote sensing platform and the use of UAVs for 
aerial monitoring of coastal rocky reef ecosystems. 
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Platform selection 

Overview 

Remote sensing of coastal ecosystems is possible from a variety of remote sensing platforms from 
earth-oriented satellites, manned aircraft, and unmanned ‘drones’. Each remote sensing platform 
varies in its spatial coverage, resolution and cost (Table 1). Earth observation satellites have the 
greatest spatial and temporal coverage and are often freely available but are limited in their 
resolution and flexibility on when an image is captured. In comparison, a drone provides high pixel 
resolution and flexibility on the timing at which imagery is captured but is more expensive and has 
lower spatial coverage.  

Table 1: Relative spatial coverage, pixel resolution, cost per unit time and cost per unit area of aerial 
imaging platforms. Note that actual costs and coverage depend on too many factors to provide 
definitive values, so assessments are provided over a broad relative scale. 

 
Drone* Fixed-

wing 
drone** 

Manned 
helicopter 

Manned 
fixed-wing 

Earth 
observation 

satellites *** 

Spatial 
coverage 

Very low Low Moderate Moderate High 

Pixel 
resolution 

Very high High High Moderate Very low 

Cost per time Moderate Moderate Very high High Very low 

Cost per unit 
area 

Very high High Very high Moderate Very low 

Flight time 
flexibility 

Very 
flexible 

Very 
flexible 

Flexible Moderately 
restricted 

Highly 
restricted 

* e.g., DJI M200 quadcopter. ** e.g., senseFly eBee. *** e.g., Sentinel-2A constellation (European 
Space Agency) 

 

Choosing the most suitable platform depends on the requirements of the proposed monitoring 
programme and typically involves a trade-off between spatial resolution (pixel size) and spatial 
coverage. The higher the spatial resolution, the smaller the area covered. Key considerations include:  

1. What is my feature of interest (FOI)? How big is it, how rare or abundant is it? 

2. What level of taxonomic resolution do I require? 

3. How big is my area or region of interest (ROI)? 
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If the FOI occurs at large spatial scales, passive remote monitoring by freely available satellites or 
manned aerial aircrafts can provide imagery of high enough resolution for broad habitat classification 
(Figure 1; Bell et al. 2018). For example, earth observation satellites with a pixel size of 10–30m have 
been used for the remote imaging of giant kelp (Macrocystis pyrifera) and relates well to in situ 
observations (Cavanaugh et al. 2011; Bell et al. 2015; Bell et al. 2018). These procedures can be run 
over very large scales and provide frequent observations through time. These types of timeseries are 
critical for understanding the influence of climate oscillations and long-term trends while also 
reducing monitoring costs (Tait et al. 2021b). 

 

Figure 1: Example use of satellite imagery (Sentinel-2 false colour to enhance vegetation signals) for 
detecting and mapping beds of giant kelp (Macrocystis pyrifera). Map shows coastal kelp beds in 
Otago in A) July 2020 and B) July 2021.  

If the FOI is smaller than can be observed with earth observation satellites but spatial and temporal 
coverage is a priority, then higher resolution imagery can be collected by tasked satellites (where 
imagery is taken on request at a chosen location e.g., SkySat), or through manned aircraft. These 
platforms provide varying pixel resolutions (ca. >1m) over reasonable areas, but can be costly and 
restricted in their deployment around ideal oceanographic and meteorological conditions. 

If the FOI is rare in space and occurs in patches less than 1–2m2, higher resolution data are required. 
This can be provided by drones which over a reduced area can provide stable, low elevation flights of 
higher pixel resolution (to a few cm) which enable species level or functional group classifications of 
coastal ecosystems (Figure 2; Murfitt et al. 2017; Tait et al. 2019). 
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Figure 2: A comparison of kelp forest imagery acquired from difference platforms. A) Sentinel-2 
imagery of a rocky reef with a 10m pixel size, B) a drone image of the same rocky reef with a 0.05m 
pixel size, and C) a zoomed in drone image with a 0.05m pixel size. 

Spectral resolution: RGB versus multispectral imaging 

Spectral resolution describes the number and width of spectral bands within the sensor. Visible light 

imagery, or RGB, includes three bands of data representing the intensities of the red, green and blue 

wavelengths of each pixel. This imagery is the same as a standard digital camera used for 

photography. Multispectral imagery includes additional bands outside of the visible light spectrum 

such as those in the ultra-blue, near infrared (NIR) and short-wave infrared wavelengths. This is 

particularly important when distinguishing vegetation because of the dissipation of infrared 

wavelengths during active photosynthesis. The reflection of electromagnetic radiation in specific 

wavelengths differs between species making it possible to distinguish species or higher functional 

groups in multispectral imaging. The combination of richer data (e.g., more bands) and specific 

spectral properties of different biogenic habitats in the NIR range provides a powerful tool for 

accurate identification of a greater range of species (Figure 3). 

 

Freely available earth observation satellites regularly use multispectral imaging, such as the Sentinel-
2A constellation (European space Agency: 13 bands between 443–2190nm) and Landsat-8 (U.S. 
Geological Survey: 9 bands between 430–1380nm) where the pixel resolution varies between bands. 
Fixed-wing or drones can be fitted with either RBG or multispectral cameras depending on resource 
availability. 
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Figure 3: Drone imagery show in A) RGB and B) false colour to highlight photosynthetic pigments 
(red). 

Tidal influences 

When choosing a suitable imaging platform, a key consideration is the relative influence of the tide 
on the FOI. Intertidal areas, for example, are less amenable to observations with satellite imagery1 
for several reasons: 

1. Satellites may not pass during desired tidal phases (e.g., over low or high tide). 

2. Meteorologically and oceanographic conditions can obscure intertidal and shallow subtidal 

habitats. 

3. Dominant species (or functional groups) form patchy mosaics. 

4. Intertidal systems can be highly complex and composed of diverse mixtures of red, green and 

brown algae, as well as varied geological substrates and invertebrate communities. 

Increases in water column depth within intertidal and shallow subtidal areas also depresses the 

spectral signatures of your FOI. This limits the use of all aerial monitoring at increasing depths, with 

water clarity further affecting the returning spectral signature of habitat classes. 

 

 
1 Note: some new datasets at resolutions of 80 cm may be useful. However, they must be purchased, and they have fewer spectral bands 
than widely available satellites such as Sentinel-2 and Landsat-8. 
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Summary 

A summary of the recommendations for choosing the appropriate imaging platform is given in the 
flowchart below (Figure 4). 

 

Figure 4: Flowchart decision tree for selecting appropriate imaging platform and camera type. FOI = 
feature of interest. RGB = red, green, blue camera. 

 

The remainder of this document focuses on the use of drones for environmental and ecological 
monitoring. 
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Aerial monitoring using UAVs 

Aerial drones are increasingly being applied to a range of environmental and ecological monitoring 
campaigns (Koh and Wich 2012; Chirayath and Earle 2016; Ventura et al. 2023), and in a number of 
ecosystem types such as rocky reefs and estuaries. In particular, drones are suitable for examining 
the spatio-temporal distribution of key biogenic features, or functional groups. As mentioned above, 
within some functional groups of vegetation it is possible to accurately separate to species/genus 
level, however, achieving this requires multispectral imagery (not RGB) and the integration of in situ 
sampling. In situ sampling provides validation of remote detection and allows robust estimates of 
uncertainty in analyses. Overall, the deployment of imaging sensors on UAVs has some advantages 
(as well as disadvantages) over other manned and unmanned platforms. 

Key advantages include: 

• High control over timing of imagery capture allows the alignment of optimal conditions for 

intertidal and shallow subtidal habitats. 

• High pixel resolution allows smaller features, or patches to be identified. 

• High pixel resolution imagery enables object-based recognition analyses, whereas coarse imagery 

(e.g., satellites) rely on spectral variation in pixels. 

• Can enable scale matching between passive remote methods and in situ inventory surveys, e.g., 

typical in situ surveys monitor at samples of 1m2, which is difficult to align with 10m2 satellite 

pixels. However, 1 m2 in situ quadrats can be matched to drone imagery (over 100’s–1000’s of 

metres squared), which can then be matched to satellites. 

Key disadvantages include: 

• Can realistically only cover small areas (e.g., <1km2 within the windows that tides allow). 

• Require field teams deployed to within 100–300m of study site.  

• Depending on the camera used, the taxonomic resolution can be limited to functional groups. 
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Resources required 

The primary tool for aerial monitoring is a drone. While there are many options for drones, there are 
a few minimum capabilities that should be considered for monitoring of coastal ecosystems. 

1. Drones should be capable of flight times >15 minutes (ideally >20 minutes). 

2. Camera should be at least 20 megapixels. 

3. The data should be GPS integrated (and tagged into image EXIF files). 

DJI© drones are becoming an industry standard across Aotearoa New Zealand because of their 
availability (including parts), reliability, battery life, security, and flight software. The exact choice of 
drone will depend mainly on the camera payload, with bigger cameras (e.g., multispectral cameras) 
requiring larger gimbals and stronger lift capacity. Other suggested equipment includes (see 
methodology for descriptions): 

1. Real Time-Kinetic (RTK) -GPS system. 

2. Large ground control points (GCPs, c. 1m2). 

3. Point and shoot camera to record photos of “point samples”. 

Compiling imagery into a final orthomosaic of the survey area requires image stitching software. 
There are several options for stitching together imagery datasets and it is not the intention of this 
document to be prescriptive about the exact software that should be used. However, there are 
several considerations for choosing an appropriate software application: 

1. Software should have capabilities for adding GCPs. 

2. When using multispectral imaging, availability of camera specific plugins for various software 

platforms (or proprietary software specific to the camera) must be considered. Increasingly, key 

image stitching software can process multiband imagery. 

Data storage also needs to be considered as the collections of aerial imagery products can produce 
very large datasets, especially when collecting multispectral imagery. Once processed the individual 
images can be converted into a large “orthomosaic” (i.e., a large image of the whole survey area) 
which maintains the pixel resolution of individual images but discards overlapping pixels occurring in 
multiple images. Retaining both datasets (individual images and combined orthomosaics) will require 
significant storage capacity. For example, unprocessed RGB and multispectral imagery from a single 
location <1km2 = 60GB, with orthomosaics ranging from 80MB to 2GB. 
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Methodology 

Aerial monitoring can be roughly divided into two sections:  

1. Data capture and image pre-processing, and 

2. Analysis and interpretation. 

Data capture and image pre-processing 

Data capture typically requires two people: a drone pilot and an experienced operator of a high-
precision GPS system (e.g., RTK (Real Time-Kinetic)). Drone pilots must be certified to Civil Aviation 
Authority (CAA) level 1.01. Pilots will ideally have a good understanding of camera settings, 
particularly for optimising image exposure in order to deal with the range of lighting scenarios 
occurring in the field. 

Suitable conditions for imagery capture 

For all aerial platforms, mapping of coastal areas is best achieved by aligning a range of 
environmental and oceanographic variables, including: 

• zero cloud cover, consistent high cloud cover or less desirable consistent cloud coverage 

• sufficient light intensity to avoid slow shutter speeds or high ISO (i.e., blur) 

• low tides and ideally spring low tides 

• calm wave conditions to better observe the benthos 

• clear water (i.e., not after storms/rainfall) to increase the depth penetration of imagery 

• low wind speeds (<15 knots). 

Aligning all these variables is extremely challenging and greatly limits the windows available for 
drone flying. However, UAV platforms are more flexible than other platforms (e.g., manned aircraft) 
which can be difficult to mobilise at short notice to make the most of ideal conditions. 

Site setup 

Before the flights commence, it is important to: 

1. Select a suitable launching platform where the drone will be visible over the entire ROI. 

2. Set up of RTK-GPS system if in use. 

3. Place GCPs. 

4. For multispectral imaging, install reference surface for camera calibration. This is typically a 2 x 

2m white/grey reference mat captured within the sampling area. 
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The use of an RTK-GPS system, while not mandatory, increases geospatial accuracy, identifies FOIs, 
and allows the production of accurate digital elevation models (DEM, using photogrammetry); 
therefore, should be incorporated wherever possible. Position accuracy is critical if surveys will be 
repeated for change detection, comparisons of FOI are made at a per-pixel basis or if imagery is 
integrated with other geospatial data sources. 

The RTK-GPS system often consists of a base station and a rover (Figure 5). The base station is a 
highly precise Global Navigation Satellite System (GNSS) receiver that provides real-time differential 
corrections that generates centimetre-level positioning data, while the rover is used to take high-
resolution positioning data of specific points across the survey area. 

Figure 5: A) A base station set up on a levelled surveying tripod, B) base station and rover on 2m 
survey staff and C) personnel taking the GPS coordinates of the GCP. 

To accurately georeference your imagery, GCPs are used. A GCP is a point on the ground with known 

coordinates within the survey area. A GCP determines the relationship between the raw drone 

imagery and the point on the ground, geo-rectifying the raw positioning of the drone imagery. 

Omitting GCPs will result in your final image having an incorrect scale, orientation or absolute 

position. GCPs are usually at least 0.5m x 0.5m and are composed of at least two contrasting colours 

to ensure visibility within the drone imagery (Figure 6). 
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Figure 6: Examples of Ground Control Point (GCP) targets used during aerial drone mapping. 

The number of GCPs required will depend on the survey area and the drone equipment being used, 

but generally between 8–16 across the survey area is sufficient. If the drone is RTK equipped then 

fewer GCPs will be needed (<8). Ideally, they will be placed evenly across the full survey area (Figure 

7A), however in coastal environments this configuration is often impracticable so they should be 

placed where possible (Figure 7B), maximising a spread across any changes in elevation. The position 

of the middle of each GCP is recorded using high-precision GPS (cm accuracy) which is used during 

image pre-processing. 

 

 

Figure 7: A) An example of ideal GCP configuration across a survey area and B) example of possible 
GCP locations on a small, narrow rocky reef. 

Training samples 

High-resolution GPS can be used to collect training and validation samples of relevant habitat types 

and/or taxa present within the survey area. Training data can be collected in several ways, with the 

methods of collection determining the robustness of machine learning results and accuracy 

estimates. Ideally, this would include haphazard collection of high accuracy GPS points across a range 

of FOI and associated habitats across or transect/quadrat inventories. 

The collection of these training samples requires experience with Aotearoa New Zealand marine 

biodiversity, and ideally experience with the biodiversity of the study site. Once the species 

composition of a study site is well established, training data can be expanded by collection of sample 

polygons within GIS software. 
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Imaging 

A full summary of camera settings is outside of the scope of this document and is highly subjective 
and condition dependent but broad guidance and key points related to camera and drone settings 
are outlined. 

Camera settings are crucial to obtaining quality imagery. In particular, a fast shutter speed is critical 
for avoiding blurry imagery. Shutter priority mode is recommended, with 1/1000 shutter or faster 
(1/1600) in bright light conditions. Aperture, ISO and focus should be kept as auto (or infinity for 
focus). If lighting conditions are low or if the camera has a narrow aperture, both shutter speed and 
flight speed can be reduced. 

Stop and shoot modes are not recommended as a way to reduce motion blur because drone flights 
are more stable when flying at a constant speed through clean air and become more unstable when 
hovering due to the creation of their own turbulence (Biggs 2020). A faster shutter speed helps to 
reduce or avoid motion blur whilst providing improved battery life and spatial coverage. 

Both the ROI and FOI will determine lens selection (focal length). Many smaller amateur grade 
drones come with wide angle lens (between 8-24mm focal length). Increasing the focal length greatly 
increases pixel resolution at the ground, but reduces area covered. 

When deciding on flight settings, it is important to have a minimum overlap of 60/80%. This means 
60% overlap on the sides (i.e., from one flight line to the next) and 80% front to back (i.e., from one 
image to the next). 

Flight altitude will be determined by the ROI and FOI, with a trade-off between pixel resolution and 
spatial coverage (flight time; Figure 8). For example, halving the altitude will increase the flight time 
by four. As a rule of thumb pixel size should be one half to one quarter the size of your FOI. It is also 
worth considering the homogeneity of the ROI and the challenges of featureless environments for 
image stitching. Such environments might require higher altitude flights to capture identifiable 
features across multiple frames. 

Figure 8: Visualisation of the influence of flight elevation on pixel size at the ground and area 
captured for three imaging systems with different camera focal lengths. 
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Image pre-processing 

Once quality images have been collected, an image stitching programme is required to combine 
individual images into a single orthomosaic image covering the extent of the ROI. There are a number 
of software platforms that can be used, many of which can run with little intervention, but this will 
vary depending on whether RGB or multispectral imagery was collected. Inputting GCPs (curtesy of 
RTK positioning of GCPs) can require a greater understanding of these platforms and experience with 
these procedures is recommended. Pre-processing is completed over a number of steps: 

For multispectral images: 

>> Stitch images >> Georeference ground targets >> Mask or clip unwanted regions >> Calculate 
bands (e.g., DEM) >> Combine bands >> Export for classification. 

For RGB images: 

>> Stitch images >> Georeference ground targets >> Mask or clip unwanted regions >> Segment 
image >> Export for classification. 

 

Post-processing: analysis, interpretation and reporting 

Post-processing here refers to the manipulation of imagery products (i.e., orthomosaics produced 
during the “pre-processing” stage). Analysis of spatial datasets requires experience using GIS 
software such as Esri®ArcGIS™ Pro. Familiarity with procedures such as clipping, masking, 
compositing, geo-rectifying, confusion matrices, and classification features is recommended. The 
classification procedures will benefit from having people with experience in the broad habitat types 
and species present and their distribution (or experience implementing automated habitat 
classification for other ecosystems). 

Data analysis 

It is not the intention of this document to be prescriptive about the exact software applications 
required. Where possible techniques are described broadly and it should be noted there are many 
applications that can be used, some of which are open source. For transparency, the author has used 
Metashape (Agisoft) for pre-processing of RGB and multispectral images including identifying GCPs, 
image orthomosaic creation and DEM creation, and uses ArcGIS™ Pro (ESRI®) for post-processing and 
data analysis. Key points: 

• Orthomosaics should be pre-processed to mask areas outside of the study zone. 

• When importing from separate pre-processing software, ideally orthoimages should be in the 

geoTIFF format. 

• Coordinate systems need to be uniform across all data types and sampling points. We 

recommend using New Zealand Transverse Mercator (NZTM2000) across software applications. 
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• Where possible orthomosaics should include other data such as elevation or relevant indices 

(e.g., normalised difference vegetation index (NDVI) and Normalised Difference Water Index 

(NDWI)). 

• User defined training samples should be saved in a “shape” file format (“.shp”). 

• For object-based classification procedures, image segmentation is required. 

• Validation samples can be imported as GPS points labelled with habitat classes (typically 

imported as CSV file). 

• Training samples are used for training machine learning algorithms such as random trees, and 

support vector machines (SVM). For every pixel (multispectral) or segment (RGB) these 

algorithms will decide the most likely class based on spectral signatures (multispectral) and 

segment attributes (size, shape). 

It is often necessary to run multiple iterations of classification to determine if all distinct features 
within the area of interest are captured. It can be necessary to use one or more ambiguous habitat 
classes that describe, for example, vegetation covered by varying depths of overlying water, or 
habitats obscured by shadows (Figure 9). The relative accuracy of multiple iterations can be assessed 
using the testing samples and the production of confusion matrices and “Cohens Kappa” values. 
More detail is available in the open-source, peer reviewed manuscript by Tait et al. (2019). 

 

Figure 8: An example of A) multispectral imagery of a rocky shore, and B) the classification of 
multispectral imagery. 
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Data interpretation  

The key value for interpreting the outcomes of habitat classification procedures is the Cohens Kappa, 
produced by confusion matrices. A value >0.85 is widely recognised as an acceptable degree of 
accuracy for automated classification of habitat types. 

Calculation of confusion matrices requires two inputs, the classified image, and the testing dataset. 
These indices determine the proportion of pixels/segments classified correctly, but also identifies the 
classes where incorrect pixels/segments were identified. High rates of misclassification may require 
similar classes to be combined. 

Reporting 

Following classification procedures, it is possible to extract each habitat class and provide an 
estimate of coverage. Changes in coverage through time can be sub-sampled within replicate clips of 
the wider orthomosaic and reported as time-series trends. More sophisticated spatial analysis of 
patch dynamics is outside the scope of this document. 



20  

Summary of workflow 

An overview of the proposed workflow for planning UAV surveys, key in situ datasets to be collected 
and the steps for analysis and accuracy assessment of classified outputs is given in Figure 10. 

 

Figure 10: Proposed workflow for planning and undertaking UAV surveys and the steps for analysis. 
The size of the Region of Interest (ROI) and Features of Interest (FOI) are key in determining flight 
parameters, particularly the altitude of image capture. For example, a large ROI and very small FOI 
may be incompatible as the required ground pixel size would require low altitude mapping which can 
be difficult to achieve over large areas. GCP = Ground Control Points; DEM = Digital Elevation Model; 
SVM = Support Vector Machines. 
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Case study 

Outline 

Exposed rocky reef coastlines are some of the least accessible habitat types in the marine 
environment. These habitats have traditionally been sampled by field researchers using quadrats and 
transects, but sampling is often highly limited in spatial extent and is biased by accessibility. Aerial 
imaging via drones can enable very high coverage sampling of these reef platforms and can reduce 
the bias of accessibility by imaging rocky reef not accessible via land or sea. Here we detail an aerial 
imaging case study to assess the demographics of habitat-forming algae. The goal of these imaging 
campaigns was the identification of habitat-forming species to genus or functional group level across 
10’s–100’s of hectares across multiple sites. We focused on the ecologically and culturally significant 
southern bull kelp (Durvillaea spp.) which has shown high vulnerability to marine heatwaves. 

Methods 

We mapped and sampled rocky reef areas using a combination of aerial imaging and in situ sampling 
with high accuracy GPS survey equipment. 

Aerial imaging protocol 

Flights were generally completed during the lowest tide series of the month and were completed 
within 30–60min each side of peak low tide. Marine conditions were typically limited to wave heights 
less than 1.0m and ideally coincided with light offshore wind conditions. This combination of 
conditions also needed to coincide with favourable sun angles (middle part of the day), resulting in a 
relatively specific set of operational parameters that directed the flight planning stage. 

Multispectral imagery was captured on a DJI Matrice 600 (SZ DJI Technology Co., Ltd., Shenzhen, 
China) equipped with both an Airphen® (Hyphen, Avignon, France) six-band multispectral camera 
and RGB imagery on a Sony mirrorless RGB camera. The Airphen® multispectral camera has a focal 
length of 8 mm, a sensor resolution of 1280 × 960 pixels, and six synchronized global shutter sensors, 
centred at 530, 570, 630, 670, 710, and 750nm (band width 10nm). The three bands of the Sony® 
(Konan, Minato-ku, Tokyo, Japan) RGB camera span the visible wavelengths (400–700nm), with large 
overlap between blue and green and green and red, but little overlap between red and blue. The 
Sony camera was an A5100 with a 15mm Voitlander® (Braunschweig, Germany) rectilinear lens, 
providing final images of 6000 × 4000 pixels. Flights were at an elevation of 30m with 85% overlap 
and 80% sidelap to achieve a pixel resolution of 0.7cm. 

To georeference the RGB and multispectral imagery, c. 16 GCPs were laid out evenly across the ROI 
and were surveyed using a high accuracy GPS system. During the drone flights, c. 200 surveyed 
“samples” of up to 16 dominant species (FOI) were collected across the ROI using the same RTK-GPS 
equipment. Tying these validated samples to the aerial imagery was achieved through precise 
identification of “targets” to the measured coordinates during both the image stitching phase and at 
the whole orthomosaic scale. The resulting dataset provided a foundation for accuracy assessments 
of habitat classification and provided even coverage of multiple habitat-types. 

Imagery analysis 

RGB imagery (8-bit) was stitched together using Agisoft Metashape™ (Agisoft LLC, St Petersburg, 
Russia) to create a 3-band orthomosaic image with a final pixel size of 1.25cm2 per pixel. 
Multispectral images (32-bit) were stitched together using Agisoft Metashape to produce a 6-band 
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orthomosaic with 2.5cm2 pixels, a 3-band RGB orthomosaic, and a DEM. Reflectance was calibrated 
using a reference panel and the radiometric calibration tool in Agisoft Metashape™. A single-band 
NDVI orthoimage was calculated using the red, and NIR bands of the multispectral camera. 

Habitat classification procedures were done on a per-pixel basis for multispectral imagery (6-bands + 
NDVI) using SVM, trained using 50 training samples per class (ArcGIS™ Pro, ESRI®, West Redlands, CA, 
USA). This analysis can be performed using the “Classification Wizard” or “Supervised classification” 
functions. For multispectral imagery “pixel-based” classification is ideal, however, RGB imagery 
should be segmented and classified using “object-based” classification. 

RGB imagery was used to identify training samples within the multispectral image and provided an 
additional quality control layer to ensure alignment between validation samples, and the 
species/habitats they represented. Training samples were collected as polygons selected around 
habitat classes encompassing, in some cases, several hundred pixels. Determination of sample 
classes was established based on the species and taxonomic categories identified from in situ 
surveys. The in situ validation samples were retained for accuracy assessment to avoid overfitting. 
The assigned classes were: Durvillaea spp.; other brown algae (mostly Carpophyllum 
maschalocarpum, but also including the occasional Cystophora spp.); Ulva spp. (green algae, sea 
lettuce); red algae; coralline algae (including articulated and crustose coralline algae); a generic algal 
class not readily identifiable to species due to increasing water depth (but still identifiable as 
vegetation); bare rock; water (with no visible submerged vegetation); and shadow. User and 
producer accuracy were assessed by an equalised stratified random sampling procedure. Cohen’s 
Kappa of the combined agreement between the classified dataset and the validation sample was also 
computed. 

Example of results 

RGB and multispectral imagery produce differing imagery (Figure 11). The multispectral imagery can 
provide additional information, including a DEM and computation of vegetation indices (Figure 12). 
The presence of red-edge and NIR bands (Figure 12D) and the use of band arithmetic procedures 
(e.g., NDVI; Figure 12E) allowed the relative coverage of photosynthetic and heterotrophic habitat-
formers to be assessed (e.g., algal beds and mussel beds). The incorporation of DEM layers (Figure 
12C) enabled more refining of the ROI and incorporation of natural zonation patterns into 
classification routines. However, photogrammetric reconstruction of elevation performed poorly 
over water, particularly where breaking waves occur, and DEM estimates over water should be 
discarded. 

 

Figure 11: Raw imagery layers taken from (A) an RGB camera, and (B) a 6-band multispectral camera. 
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Figure 12: Layers of imagery and geospatial information of rocky reef ecosystems for performing and 
assessing habitat classification procedures.Layers show (A) locations of ground control points and in 
situ validation samples for multiple habitat types; (B) RGB imagery; (C) photogrammetric construction 
of a digital elevation model; (D) 6-band multispectral imagery (false colour image showing NIR in 
“red” band); (E) normalised difference vegetation index; (F) classification results.It is important to 
recognise that this imagery was captured under favourable conditions; consistent cloud cover (i.e., 
not changeable), very low tides, moderate sea conditions, and close to midday sun. The ability to 
take in situ measurements at depths greater than 1m is difficult, and deeper vegetation may have a 
unique spectral signature relative to bare substrate, but it is not possible to separate species. 

The accuracy of machine learning habitat classification procedures showed overall high accuracy, 
with 94% of validation samples correctly classified (kappa value of 0.94.) All individual classes showed 
greater than 85% agreement with validation samples except for the user accuracy metric for Ulva 
spp. The high accuracy of species or functional group detection within high resolution multispectral 
imagery therefore provides a useful tool for monitoring diverse rocky reef ecosystems. 

Details of the full study are available in an open-source, peer-reviewed manuscript by Tait et al. 
(2021a). 
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Glossary of abbreviations and terms 

 

 

 

 

CAA Civil Aviation Authority 

DEM Digital Elevation Model 

FOI Feature Of Interest 

GCP Ground Control Points 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

ISO ISO is the sensitivity to light for camera sensors. The acronym stands for 
“International Organization for Standardization” but has little relevance for 
the use of this camera setting 

NDVI Normalised Difference Vegetation Index 

NDWI Normalised Difference Water Index 

NIR Near Infrared Radiation 

Orthomosaic  An orthographic image produced by “stitching” many overlapping images 
together 

RGB Red Green Blue camera 

ROI Region Of Interest 

RTK Real Time-Kinetic 

SVM Support Vector Machines 

UAV Unmanned Aerial Vehicle 
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